

Recent development on hydrogen impurity analysis

Thomas Bacquart

2nd OEM Workshop – 9th October 2015

- New developments on hydrogen impurities
- New capability at NPL
- Perspective for the NPL enrichment device

UKAS accredited ISO 17025

New development on hydrogen impurities

Reactive gases

• Water

- Total hydrocarbons
- Oxygen
- Carbon dioxide
- Formic acid
- Carbon monoxide
- Ammonia
- Total halogenated compounds
- Formaldehyde
- Total sulphur compounds

Inert gases

- Helium
- Nitrogen
- Argon

(300 μmol/mol) (100 μmol/mol) (100 μmol/mol)

(1 mg/kg)

Non-gases

Particulates

(5 µmol/mol)

(2 μmol/mol) (5 μmol/mol) (2 μmol/mol) (0.2 μmol/mol) (0.2 μmol/mol)

- $(0.2 \ \mu mol/mol)$ $(0.1 \ \mu mol/mol)$
- (0.05 µmol/mol)
- (0.01 µmol/mol)
- (0.004 µmol/mol)

International Organization for Standardization

ISO 14687-2:2012

Hydrogen fuel – Product specification – Part 2: Proton exchange membrane (PEM) fuel cell applications for road vehicles

Water analysis

Water is added to the gas cylinder using a syringe and loop

Water analysis

Primary reference materials for water content in hydrogen

Water analysis – Linearity – QCM

Acceptable linearity from 5-100 ppm water in H_2 Repeatability of slope: \pm 30 % (day to day effect on instrument sensitivity) Repeatability of analysis: < 1 %

Intermediate precision: study ongoing Trueness: comparison with primary method (Dew point)

Repeatability of slope: \pm 5 % Repeatability of analysis: < 2 %

Intermediate precision: study ongoing Trueness: comparison with primary method (Dew point)

Water analysis – Trueness assessment N_2 and H_2

Compare our mixtures against dynamic standards and instruments against primary standard method:

Water analysis - Summary

CRDS

Linear 2-20 ppm Repeatable Low day-to-day effect Trueness ongoing Not accredited ISO17025 at NPL

QCM

Linear: 5-100 ppm Repeatable Significant day-to-day effect Trueness ongoing Method accredited ISO17025 at NPL

Method extensively validated by end of October 2015

Formaldehyde analysis

NPL capability:

GC-PDHID: under development

Methaniser GC-FID: method not fully validated (theoretical LOD ~ 10 ppb)

GC-MS with pre-concentration: validated by another NPL team (LOD < 10 ppb)

FTIR: only qualitative, identification

Formaldehyde analysis

Produce and validate formaldehyde standards at 2 ppm and 10 ppm in hydrogen matrix

- Pure formaldehyde is not stable (100% formaldehyde cannot be purchased easily)
- Formaldehyde gas standards can be derived from trioxane
- System is built for producing standards in nitrogen
- Two gas mixtures containing 2 ppm and 10 ppm of formaldehyde in hydrogen have been prepared

Formaldehyde analysis - 1st observation NPL

Formaldehyde analysis - Summary

- Analysis of formaldehyde in hydrogen
 - Several methods under development/validation
 - Gas standard for Formaldehyde in H₂
- Stability of formaldehyde in hydrogen
 - 2 ppm formaldehyde in $H_2 \rightarrow 0$ % after 3 months
 - 10 ppm formaldehyde in $H_2 \rightarrow$ stable after 1 month
 - Study ongoing until complete degradation

Halogenated compounds in hydrogen

 Analysis of 3 freons gases (CHCIF₂, CCI₂F₂, C₂H₂F₄) in N₂ using ThermoDesorption GC-MS (TD-GC-MS)

Halogenated compounds in hydrogen

 Analysis of 3 freons gases (CHCIF₂, CCI₂F₂, C₂H₂F₄) in N₂ using ThermoDesorption GC-MS (TD-GC-MS)

Halogenated compounds in hydrogen

- Capability to analyse halogenated compounds at low concentration in gas
- Preparation of standard of halogenated compounds in hydrogen → to be evaluated
 - Purchasing pure compounds
 - Oxy-flame mixture
 - Stability
- Improvement of procedure \rightarrow Funding required!

- New developments on hydrogen impurities
- New capability at NPL
- Perspective NPL enrichment device

Characterisation of palladium-based membranes for hydrogen purification

Characterisation of palladium-based membranes for hydrogen purification

Project outcomes

- New developments on hydrogen impurities
- New capability at NPL
- Perspective NPL enrichment device

Perspective NPL enrichment device

Private partner needed for the commercialisation of the device

Conclusion

- New development on hydrogen impurities
 - Water analysis almost extensively validated and traceable to SI
 - Formaldehyde in Hydrogen: 1 month stability ensured
 - Halogenated analysis:
 - Organo-halogenated compounds analysed by TD-GC-MS
 - Investment needed to continue further
- New capability at NPL

New service: Characterisation of palladium-based membranes for hydrogen purification

- Perspective NPL enrichment device
 - Private laboratory partner needed to commercialise the device

Progress in other projects...

- Report of analysis for impurities in hydrogen under UKAS ISO17025 accreditation in process
- New development ongoing for ammonia, formaldehyde (GC-MS), formic acid and formaldehyde (GC-PDHID) new binary standards in hydrogen in preparation
- Participation in project proposal EMPIR conormative call – Project proposal called Hydrogen

Acknowledgement

Hydrogen Quality control Innovate UK

Gas and Particulate Metrology group Humidity group

Thanks,

Questions?